
The aim of this study was to investigate chang-
ing mechanical properties of the bolus during 
mastication and to quantify mechanical proper-
ties of the fi nal bolus at swallowing. Changing 
mechanical properties of the bolus of three differ-
ent types of foods (rice cracker, cheese and pea-
nuts) by twelve normal dentitions were investigat-
ed by principal component analysis (PCA) on six 
mechanical properties (rupture energy, elasticity, 
viscosity, hardness, cohesiveness and adhesive-
ness). The raw data of cohesiveness immediately 
before swallowing was always constant. In all 
three food samples, the results by PCA on six 
parameters indicated that cohesiveness was inde-
pendent from the remaining fi ve parameters, and 
two factors were extracted on these fi ve parame-
ters by PCA. Furthermore, factor structure of 
bolus at swallowing showed no difference 
between the three food samples in spite of the 
variations in the raw data. The mechanical proper-
ties of swallowable bolus were clarifi ed for the 
fi rst time. 
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Introduction

Various methods have been employed to investigate 
masticatory performance, and it has been widely dis-
cussed. Manly and Braley,1 Ishihara,2 and Agrawal et 
al.3 evaluated masticatory performance using a sieve 
method, while Ono et al.4, Tanaka et al.5 and Shiga et 
al.6 demonstrated an increase in the amount of gelatin 
in gummy jelly during mastication. Farrel7 focused on 
digestion of food. Honma et al.8 studied bolus forma-
tion of rice crackers. Edlund and Lamm9 proposed the 
use of a condensation silicone impression material as 
a test food to develop a method describing simply and 
precisely the masticatory ability of a person. Most of 
them, however, have mentioned an only single type of 
test food and considered only the particle size of the 
bolus. Moreover, mechanical properties of the fi nal 
bolus immediately before swallowing have never been 
described. 

Mechanical properties of food bolus should repre-
sent the feature of comprehensive masticatory per-
formance, such as, occlusion,10-12 masticatory muscle 
activity,13-15 the functions of the tongue16-19 and oral 
mucosa.20,21 The mechanical properties of the food 
bolus alter by mastication in order to suit the textural 
attributes.22-24 It would be diffi cult to evaluate mastica-
tory performance by only a single type of food.

The mechanical properties of food alter by the pro-
cess of mastication before swallowing, including com-
minution of food, mixing, kneading25 and dilution with 
saliva.26 Masticatory performance should be changed 
and fi t suitable for one texture,27,28 and the attributes 
of the food bolus also depend on the original texture 
of food. Therefore, multivariate analysis of the behav-
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ior of mechanical properties of food boluses derived 
from foods of various textures is required. In the pres-
ent study, three different types of foods; rice cracker, 
cheese and peanuts were examined, and six mechani-
cal properties of their boluses during mastication and 
the endpoint of mastication were analyzed in detail by 
principal component analysis (PCA).

The aim of this study was to investigate changing 
mechanical properties of the bolus during mastication 
and to quantify mechanical properties of the fi nal bolus 
at swallowing which will be good index for evaluating 
total masticatory performance.

Materials and Methods

Subjects 
A total of twelve subjects (eight males and four 

females; average age 26.6 years old) were selected 

by the following eligibility criteria: complete natural 
dentition except for occasionally missing third molars, 
bilateral Angle Class I molar relationships; no history 
of orthodontic treatment or maxillofacial surgery, lat-
eral tooth guidance pattern of group function occlusion 
or cuspid-protected occlusion. Informed consent was 
obtained from each subject before the onset of this 
study.

Food samples for examination
Samples from foods of three different textures 

were selected: three pieces of rice crackers (Bourbon 
Petit Usu-Yaki, 2.4g, 30 mm×1 mm, Bourbon Co., 
Japan), a piece of cheese (Candy type Cheese, 
5.9g, 20 mm×10 mm, Rokko Butter Co., Japan) and 
three pieces of peanuts (Ajitsuke rakkasei, 3.0g, 
20 mm×10 mm, Irita Shokai Co., Japan) (Fig. 1 (1)). 
Three food samples, which had stable textures and 
bolus of them were suitable for measurement, were 

(a)
(b)

(c)
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Fig. 1. Food samples, experimental container and experimental device
(1) 3 food samples, (a) Rice cracker (b) Cheese (c) Peanuts (2) Experimental container (3) Experimental device (the 
creep meter RHEOMETER II, RE3305) 
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selected according to the criteria of Yanagisawa et 
al.29 

The amount of food samples for the experiment was 
determined between the maximum for natural mastica-
tion and the minimum for examination.

Experimental device and container
A creep meter RHEONER II (RE3305; load cell: 

maximum load 2N; Yamaden Co., Japan; Fig. 1 (3)) was 
used for measurement. A cylindrical plunger (diam-
eter, 5 mm) was used, and the container comprised 
an acrylic plate (18 mm×18 mm) and a ring（inner 
diameter, 12 mm; height, 10 mm) that was covered with 
another acrylic plate with a hole (diameter, 8 mm) in 
the center for the plunger to pass through (Fig. 1 (2)). 
The size of the container complied with the method of 
measuring the hardness of the food particles in the 
elderly person who has some diffi culty in mastication 
and swallowing. This method was established by the 
Ministry of Health and Welfare Japan.30 The size of the 
container was scaled down for our examination. 

By an axial compression test, creep test and tex-
ture profi le analysis, we obtained raw data with regard 
to six parameters: rupture energy, elasticity, viscosity, 
hardness, cohesiveness and adhesiveness.

Axial compression test
Rupture energy was measured by the axial com-

pression test. Each sample was placed within the ring 
and was compressed with the plunger at a constant 
speed of 1.0 mm/sec. The force was measured every 
0.08 seconds. Rupture energy was measured from 
the resultant compression curve and was determined 
when the plunger reached a depth of 8 mm into the 
sample. 

Creep test
Elasticity and viscosity were measured by the creep 

test under axial compression for 1 minute at a constant 
compression speed of the plunger, i.e., 5 mm/sec. The 
force was arranged within the range which keeps lin-
earity between stress and strain. This linearity was 
determined to hold for deformations of less than 20%, 
and the optimal force for each sample was 0.005–0.2 
N.

Texture profi le analysis31

Instrumental texture profi le data were obtained 
after subjecting the sample to compression twice. The 
samples were compressed to 67% of their primary 
height using a cylindrical plunger (diameter, 5 mm) at 
a speed of 1 mm/sec. The texture profi le parameters 
were determined as follows (Fig. 2):
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Fig. 2.  Parameter of texture profi le analysis
h1=Hardness, A2/A1=Cohesiveness, A3=Adhesiveness
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(1) Hardness (N) was defi ned as “the maximum 
force required for compressing the sample” and was 
calculated as the peak force of the fi rst compression 
of the sample.

(2) Cohesiveness was calculated as A2/A1 (A1 and 
A2 represent the integrated energy required for the fi rst 
and the second compression, respectively).

(3) Adhesiveness (J/m3) was calculated as the inte-
gration of the negative energy between the fi rst and 
second compressions.

Experimental procedure 
The food boluses were maintained at 37.0 °C 

through the experiment.
The number of natural chewing strokes until swal-

lowing was counted for each food sample in each 
subject. During mastication, subjects were prohibited 
partial swallowing. 

The point immediately before swallowing was defi ned 
as the last point. 

The fi rst point was defi ned as the point when hard-
ness of food samples became measurable by load cell 
(2N) for the fi rst time. 

The point which was the middle number of chewing 
strokes between the fi rst and last points was termed as 
the middle point.

The chewing strokes of each point were determined 
(Table 1 (a) (b) (c)). Samples in the oral cavity were 
naturally pitted out by the subjects. The bolus was 
almost evenly divided into two, and placed into two 
containers. It in one container was used for the axial 
compression test (for measurement of rupture energy) 
and the other, for the creep test and texture profi le 
analysis (measurement of the remaining fi ve param-
eters). This procedure was repeated three times at 
each point. 

Statistical analysis
Statistical analysis was carried out by a one-way 

analysis of variance (ANOVA) followed by a Tukey 
multiple range test at a 5% level of signifi cance to com-
pare the fi rst with the middle point, the middle with the 
last point (SPSS 12.0J, SPSS Japan Inc.). In this case, 
each point name was decided as the independent 
variable and the six parameters were the dependent 
variables.

The means and standard deviations of all the 
variables were calculated. A correlation matrix was 
obtained from normalized data. PCA and factor analy-
sis were used to obtain the dependence structure for a 
set of variables. PCA of the data was performed using 

Subject First point Middle point Last point

1 25 31 38

2 15 20 26

3 20 27 33

4 21 27 334 21 27 33

5 15 18 21

6 15 21 27

7 24 29 34

8 16 23 30

9 20 25 30

10 20 28 36

11 16 23 30

12 20 28 3612 20 28 36

Table 1(a) The number of chewing strokes of rice cracker 

Subject First point Middle point Last point

1 15 20 241 15 20 24

2 11 17 23

3 14 27 40

4 13 17 214 13 17 21

5 16 20 24

6 14 21 28

7 17 26 35

8 8 12 16

9 10 18 26

10 13 18 23

11 12 20 28

12 16 30 4412 16 30 44

Table 1(b) The number of chewing strokes of cheese 

Subject First point Middle point Last point

1 18 22 261 18 22 26

2 15 20 25

3 19 22 25

4 17 19 21

5 16 21 26

6 18 21 24

7 20 25 30

8 12 14 16

9 16 20 24

10 12 17 22

11 21 26 31

12 23 31 3912 23 31 39

Table 1(c) The number of chewing strokes of peanuts
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0 2cm
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0 2cm

A2

B1 B2
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0 02cm 2cm
Fig. 3. Examples of food bolus
Rice cracker at the fi rst point (A1), Rice cracker at the last point (A2), Cheese at the fi rst point (B1), Cheese at the last point (B2), Peanuts 
at the fi rst point (C1) and Peanuts at the last point (C2)
In all 3 food samples, the food bolus was digested at the last point.
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STATISTICA (StatSoft Inc., USA).

Ethical Review Board
This study was approved by the Institutional Ethical 

Review Board of Tokyo Medical and Dental University 
(Approval number: 202; March 22, 2006). 

Results

The change of mechanical properties of boluses as 
the progress of mastication

In case of rice cracker, rupture energy signifi cantly 
decreased during the transition from the fi rst to the 
middle point (F-value = 10.73; P-value < 0.001).

The elasticity of cheese decreased linearly through-
out the process (F-value = 72.09; P-value < 0.001). In 
contrast, the viscosity of all three samples decreased 
during each point of transition (Rice cracker: F-value 
= 19.16; P-value < 0.001, Cheese: F-value = 41.79; 
P-value < 0.001, Peanuts: F-value = 16.26; P-value < 
0.001).

The hardness of all three samples apparently 
decreased during both points of transition (Rice crack-
er: F-value = 17.75; P-value < 0.001, Cheese: F-value 
= 99.84; P-value < 0.001, Peanuts: F-value = 13.31 
P-value < 0.001).

In case of rice cracker, cohesiveness increased dur-
ing both points of transition (F-value = 41.98; P-value 
< 0.001), and in cheese, cohesiveness remained 
unchanged throughout the experiment (F-value = 2.75; 
P-value = 0.07), and adhesiveness clearly decreased 
during both points of transition (F-value = 36.04; 
P-value < 0.001). The cohesiveness of the peanuts 
clearly increased during the transition from the middle 
to the last point (F-value = 12.18; P-value < 0.001) 
(Table 2 (a) (b) (c)).

Coeffi cient of variation of each test
The cohesiveness immediately before swallowing 

was always approximately 0.5 (coeffi cient of variation 
(CV): 0.1~0.15); however, the CVs of the remaining fi ve 
parameters varied considerably (Table 3). 

Principal component analysis
PCA of all six parameters

In all three food samples, the fi rst two principal com-
ponents extracted from the correlation matrix of all six 
parameters explained more than 75% of the variance 
(Table 4 (a)). The scree plot indicated a stepped offset 
between the second and third eigenvalues. 

Point
Rupture 
energy
(J/m3)

Elasticity
(Pa)

Viscosity
(Pa s)

Hardness
(N) 

Cohesiveness Adhesiveness
(J/m3)

First Average
(SD)

1.58 104*
(1.08 104)

5.65 104*
(4.33 104)

3.91 105*
(2.60 106)

0.67*
(0.46)

0.45*
(0.07)

2.62 103*
(1.50 103)

Middle Average
(SD)

9.61 103

(6.98 103)
2.93 104

(2.07 104)
2.30 106

(1.57 106)
0.40

(0.34)
0.54

(0.07)
2.54 103

(1.65 103)

Last Average
(SD)

7.04 103

(6.07 103)
1.39 104

(6.61 103)
1.01 106*
(5.69 105)

0.19*
(0.12)

0.59*
(0.06)

1.57 103*
(1.16 103)

Table 2 (a) The raw data of rice cracker *: signifi cantly different 
from the middle point by Tukey HSD(p < 0.05) 

Point
Rupture 
energy
(J/m3)

Elasticity
(Pa)

Viscosity
(Pa s)

Hardness
(N) 

Cohesiveness Adhesiveness
(J/m3)

First Average
(SD)

4.29 104*
(1.02 104)

1.71 105*
(5.00 104)

2.28 107*
(1.45 107)

1.38*
(0.31)

0.49
(0.07)

7.19 103*
(3.09 103)

Middle Average
(SD)

2.38 104

(1.05 104)
1.12 105

(6.24 104)
1.15 107

(8.46 106)
0.86

(0.38)
0.52

(0.07)
5.09 103

(2.28 103)

Last Average
(SD)

9.36 103*
(6.61 103)

3.38 104*
(3.71 104)

3.35 106*
(3.67 106)

0.34*
(0.19)

0.54
(0.07)

2.47 103*
(1.39 103)

Table 2 (b) The raw data of cheese *: signifi cantly different from the 
middle point by Tukey HSD(p < 0.05) 

Table 2 (c) The raw data of peanuts *: signifi cantly different from 
the middle point by Tukey HSD(p < 0.05)
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The factor structure was determined by factor analy-
sis of two factors (Table 4 (b); Factor 2 negatively 
correlated with cohesiveness, and factor 1 positively 
correlated with the remaining fi ve parameters).

PCA of fi ve parameters
The cumulative contribution ratio of the fi rst two 

principal components accounted for 65% of the vari-
ance in the three food samples at all points (Table 5 
(a) (b) (c)). 

PCA on the correlation matrix of fi ve parameters 
revealed two factors (Table 6 (a) (b) (c)). Correlation 

Food 
samples Point Rupture 

energy Elasticity Viscosity Hardness Cohesiveness Adhesiveness

Rice cracker

First 0.69 0.77 0.72 0.69 0.16 0.57 

Middle 0.73 0.71 0.68 0.85 0.13 0.65 

Last 0.86 0.48 0.56 0.63 0.10 0.74 

First 0.24 0.29 0.64 0.22 0.14 0.43 

Cheese Middle 0.44 0.56 0.74 0.44 0.13 0.45 

Last 0.71 1.10 1.10 0.56 0.13 0.56 

First 0 49 0 99 0 87 0 56 0 18 0 58

Peanuts

First 0.49 0.99 0.87 0.56 0.18 0.58 

Middle 0.67 1.23 0.89 0.66 0.22 0.62 

Last 0.71 0.99 0.73 0.62 0.15 0.77 

Table 3 CV value 

Rice cracker Cheese Peanuts

Eigenvalue
Contributing 

ratio % Eigenvalue
Contributing 

ratio % Eigenvalue
Contributing 

ratio %component Eigenvalue ratio % 
(cumulative )

Eigenvalue ratio % 
(cumulative )

Eigenvalue ratio % 
(cumulative )

1st 3.97 66.2(66.2) 3.95 65.8(65.8) 3.79 63.2(63.2) 

2nd 0.85 14.2(80.4) 1.02 16.9(82.7) 0.90 15.1(78.3) 

3rd 0.46 7.7(88.1) 0.40 6.7(89.3) 0.61 10.1(88.4) 

4th 0.34 5.6(93.7) 0.33 5.4(94.7) 0.35 5.8(94.2) 

5th 0.22 3.6(97.3) 0.21 3.6(98.3) 0.22 3.7(97.9) 

6th 0.16 2.7(100.0) 0.09 1.7(100.0) 0.13 2.1(100.0) 

Table 4 (a) PCA on six parameters

Parameters
Rice cracker Cheese Peanuts

Factor1 Factor2 Factor1 Factor2 Factor1 Factor2

Rupture 
energy 0.74 0.42 0.88 0.19 0.81 0.32 

Elasticity 0.74 0.46 0.88 0.05 0.47 0.56 

Viscosity 0.85 0.32 0.83 0.13 0.71 0.56 

Hardness 0.78 0.39 0.94 0.18 0.69 0.58 

Cohesiveness -0.14 -0.96 -0.08 -0.99 -0.07 -0.94 

Adhesiveness 0.91 -0.06 0.86 -0.15 0.93 -0.01 

Table 4 (b) Factor loadings by factor analysis on six parameters

Rice cracker Cheese Peanuts

component

Eigenvalue 
Contributing 

ratio % 
(cumulative )

Eigenvalue 
Contributing 

ratio % 
(cumulative )

Eigenvalue 
Contributing 

ratio % 
(cumulative )

1st 3.4 68.6(68.6) 2.3 45.3(45.3) 3.4 68.1(68.1) 

2nd 0.6 12.7(81.3) 1.1 22.0(67.3) 0.5 11.0(79.1) 

3rd 0.4 8.7(90.0) 0.7 13.8(81.1) 0.5 10.2(89.3) 

4th 0.3 6.0(96.0) 0.5 10.2(91.3) 0.4 7.8(97.1) 

5th 0.2 4.0(100.0) 0.4 8.7(100.0) 0.1 2.9(100.0) 

Table 5 (a) PCA on fi ve parameters at the fi rst point 
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Rice cracker Cheese Peanuts

component

Eigenvalue 
Contributing 

ratio % 
(cumulative )

Eigenvalue 
Contributing 

ratio % 
(cumulative )

Eigenvalue 
Contributing 

ratio % 
(cumulative )

1st 3.8 77.0(77.0) 3.4 68.5(68.5) 3.1 61.9(61.9) 

2nd 0.6 11.0(88.0) 0.7 14.9(83.4) 0.9 18.7(80.6) 

3rd 0.3 5.5(93.5) 0.5 10.7(94.1) 0.4 8.0(88.6) 

4th 0.2 4.0(97.5) 0.2 3.6(97.7) 0.3 6.2(94.8) 

5th 0.1 2.5(100.0) 0.1 2.3(100.0) 0.3 5.2(100.0) 

Table 5  (b) PCA on fi ve parameters at the middle point 

component

Rice cracker Cheese Peanuts

component

Eigenvalue 
Contributing 

ratio % 
(cumulative )

Eigenvalue 
Contributing 

ratio % 
(cumulative )

Eigenvalue 
Contributing 

ratio % 
(cumulative )

1st 3.35 67.0(67.0) 3.16 63.3(63.3) 3.44 68.7(68.7)

2nd 1.01 20.2(87.2) 1.04 20.8(84.1) 1.09 21.9(90.6) 

3rd 0.37 7.4(94.6) 0.41 8.1(92.2) 0.18 3.7(94.3) 

4th 0.18 3.6(98.2) 0.28 5.6(97.8) 0.16 3.3(97.6) 

5th 0.10 1.8(100.0) 0.11 2.2(100.0) 0.12 2.4(100.0) 

Table 5 (c) PCA on fi ve parameters at the last point

Parameters

Rice cracker Cheese Peanuts

Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

Rupture 
energy 0.81 0.28 0.29 0.70 0.84 0.20 

Elasticity 0.89 0.23 0.00 0.88 0.26 0.96 

Viscosity 0.82 0.42 0.85 -0.07 0.83 0.42 

Hardness 0.22 0.92 0.74 0.36 0.76 0.37 

Adhesiveness 0.52 0.68 0.77 0.14 0.72 0.37 

Table 6 (a) Factor loadings by factor analysis on fi ve parameters at 
the fi rst point

Parameters

Rice cracker Cheese Peanuts

Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

Rupture 
energy 0.33 0.89 0.87 0.00 0.89 0.03 

Elasticity 0.42 0.83 0.77 0.45 0.08 0.96 

Viscosity 0.85 0.37 0.80 0.41 0.64 0.62 

Hardness 0.78 0.51 0.74 0.61 0.84 0.24 

Adhesiveness 0.90 0.32 0.16 0.95 0.83 0.24 

Table 6 (b) Factor loadings by factor analysis on fi ve parameters at 
the middle point

Parameters

Rice cracker Cheese Peanuts

Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

Rupture 
energy 0.92 0.08 0.81 0.23 0.85 0.39 

Elasticity 0.14 0.92 0.38 0.84 0.07 0.98 

Viscosity 0.35 0.87 0.11 0.94 0.79 0.50 

Hardness 0.92 0.31 0.91 0.23 0.93 0.16 

Adhesiveness 0.80 0.44 0.91 0.20 0.95 -0.15 

Table 6 (c) Factor loadings by factor analysis on fi ve parameters at 
the last point
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rates larger than 0.2 were not recorded in the residual 
error matrix. The data structure could be explained by 
two factors. 

The factor structures of the fi ve parameters at the 
last point differed slightly between the three food sam-
ples. Factor 1 positively correlated with rupture energy, 
but Factor 2 positively correlated with elasticity and 
viscosity. 

Discussion

Masticatory behavior
It became easier to swallow the bolus of the rice 

cracker after crushing or absorbing saliva during mas-
tication. The cheese bolus emulsifi ed without absorb-
ing saliva, and its adhesiveness decreased. A unique 
characteristic behavior was that the cohesiveness 
remained unchanged at 0.5 even during mastication. 
The bolus of peanuts neither absorbed saliva nor did 
its essential properties change during mastication.

The general characteristics of data
In this study, the larger cohesiveness became, the 

larger wateriness became. The minimal cohesiveness 
possible for swallowing was constant in all the food 
samples. Every food sample should be masticated 
toward the constant cohesiveness. 

Small SD of cohesiveness indicates variability of 
normal subjects was small. It is strongly suggested that 
mastication goes toward the point of cohesiveness.

It is quite natural that other fi ve parameters (rup-
ture energy, elasticity, viscosity, hardness and adhe-
siveness) decrease with mastication progress. Past 
reports estimated an attenuation rate of one of these 
parameters for ability of mastication function,32 but in 
this study, because each SD of these parameters was 
very large, it would be diffi cult to calculate the accurate 
attenuation rate with only one parameter of one test 
food sample.

Therefore, the analysis of factor structure of the six 
mechanical parameters was performed. 

Multivariate analysis
PCA and factor analysis of six parameters

The factor structure was determined by factor analy-
sis of two factors. Examination of the residual correla-
tion matrix indicated a close fi t between the observed 
and reproduced correlation matrices. This is thought 
to be an appropriate method to determine the two fac-
tors.

In all three food samples, raw data showed that 
cohesiveness had different behavior from other fi ve 
parameters, and it was confi rmed by PCA of six param-
eters.

PCA and factor analysis of fi ve parameters with-
out cohesiveness

Cohesiveness was separately investigated because 
it was independent of the remaining fi ve parameters. 
Factor analysis of the correlation matrix of fi ve param-
eters at each point yielded additional two factors. 
The factor loading of each of the three food sam-
ples showed a characteristic structure for a set of fi ve 
parameters at the fi rst and the middle point. It indicates 
the changing of mechanical properties of bolus was 
depended on the texture of test food. There was no dif-
ference between the three food samples regarding the 
factor structure of fi ve parameters immediately before 
swallowing despite the variations in the raw data at 
the last point, therefore, it should be a key component 
during examination on masticatory performance. It is 
clarifi ed that the correlation of parameters became 
constant as mastication progressed toward the end 
point in all three food samples.

The infl uence of saliva to the mechanical proper-
ties of food samples may become important for more 
detailed study. The viscosity of saliva and powder-
water ratio of bolus would be measured to investigate 
their infl uence on the mechanical properties of food 
samples.

Conclusion

 The standard deviations of rupture energy, elasticity, 
viscosity, hardness and adhesiveness vary consider-
ably, and it is diffi cult to outline the changes in the 
mechanical properties of a food bolus during mastica-
tion. The results of PCA indicate that fi ve parameters 
of the bolus during mastication can be summarized by 
two factors (factors 1 and 2), and masticatory perfor-
mance can be represented by the plane of these two 
factors.

 Cohesiveness immediately before swallowing was 
constant in all three food samples. Factor analysis 
showed that despite the variations in the raw data at 
the last point, there was no difference between the 
three food samples regarding the factor structure of 
fi ve parameters immediately before swallowing. 

 In all food samples, the endpoint of mastication was 
clarifi ed in this study.
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